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Triangular Ising antiferromagnet: Boundary conditions, ground state entropy, and vortices
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The ground state entropy density of the triangular Ising antiferromagnet is considered as a function of
boundary conditions on domains for which the ground states do not admit a dimer covering. These domains
admit a rich set of ground states that cannot be classified in the usual way in terms of nonintersecting strings.
Various parametrized boundary conditions and domain shapes are identified that allow the ground state entropy
density to be varied between zero and maximal degeneracy. The dependence of degeneracy on boundary spins
and/or domain shape is interpreted in terms of strings that are not restricted to be nonintersecting.
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I. INTRODUCTION

Frustrated systems do not order at zero temperature, have
a highly degenerate ground state, and have application in a
variety of physical systems [1-8]. It is well known that for
some frustrated systems the infinite volume limit of the
ground state entropy density of finite volume ensembles de-
pends on the boundary condition of the finite system [9,10].
This is particularly interesting because the length of the
boundary vanishes relative to the system size in the thermo-
dynamic limit. The apparent paradox this raises was resolved
by Aizenman and Lieb [10] who showed that the thermody-
namic entropy density is the maximum over all boundary
conditions. Except in a few cases, however, little is known
about the general relationship between boundary conditions
and ground state entropy.

The classical triangular Ising antiferromagnet (TIA) is an
archetypical frustrated system for which the thermodynamic
ground state entropy density depends exquisitly on the
boundary conditions for finite volume ensembles [10-12].
However, the only case which is well understood is the rect-
angular domain with periodic boundary conditions, where
the ground states admit a dimer covering and can be mapped
to nonintersecting strings [13]. We recently identified a dif-
ferent class of boundary conditions that has a richer manifold
of ground states that do not admit a dimer covering, and
showed that the entropy density could be varied between
zero and maximal degeneracy [12]. However, aside from
identifying this class of boundary conditions, that work pro-
vided little fundamental insight into the relationship between
boundary conditions and degeneracy. Here we extend this
work in three ways. (1) We identify a larger class of bound-
ary conditions on a triangular domain that give variable de-
generacy, (2) we identify a variety of domain shapes whose
shape controls the degeneracy, and (3) we show how the
relationship between degeneracy and boundary conditions or
domain shape can be interpreted in terms of strings that are
not restricted to be nonintersecting. These results provide
considerably more insight into this rich set of ground states.
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II. BOUNDARY CONDITIONS AND ENTROPY DENSITY

The classical, isotropic TIA with nearest neighbor interac-
tions has a thermodynamic ground state entropy density of
~0.3231 [14,15]. (The reader is alerted to the fact that the
incorrect value of 0.3383 given in Ref. [14] has propagated
quite widely in the literature.) We therefore define the nor-
malised entropy density at absolute zero for a finite system
of N spins with boundary condition B, Sy(N,B), by

In W(N,B)

SoN-B) == N

(1)
where W(N, B) is the number of ground state configurations.
Our interest here is in the thermodynamic limit

Sy(B) = lim Sy(N, B) (2)
N—oo

as a function of boundary condition.

A manifold of ground states that has been well character-
ised is the rectangular domain with periodic boundary con-
ditions [13]. The ground states on this domain can be
mapped to a dimer covering on the dual (hexagonal) lattice,
which allows each ground state to be mapped to a configu-
ration of nonintersecting strings [16]. In the thermodynamic
limit the normalized entropy density, denoted by a(p), is a
function of the string density (number of strings divided by
the number of sites in a row) p, and is given by [13]

2 wpl2
(p In2+ —J ln[cos(x)]dx) ,
T

0
3)

where RP(p) denotes a rectangular periodic boundary condi-
tion with string density p. The entropy density is zero for
p=0 and p=1, and peaks at unity (maximal degeneracy) for
p=2/3. Strings intersect the two opposite edges of the do-
main between each pair of adjacent opposite spins so that the
string density can be calculated for a particular boundary
condition, and the thermodynamic entropy density calculated
by Eq. (3).

Only a restricted set of boundary conditions admit a dimer
covering, however [16], and a richer manifold of ground
states can be obtained from boundary conditions that do not

So(RP(p)) = a(p) = 03231
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FIG. 1. (a) The triangular domain with the independent triangles
labeled “a.” (b) A ground state configuration with a high energy
elementary triangle. Filled and open circles denote up and down
spins, respectively, and favorable and unfavorable interactions are
denoted by broken and solid lines, respectively. (¢) Triangular do-
main with a triangular subdomain of fixed spins as described in the
text. Gray circles denote free spins.

belong to this set. In particular, we identify here a wide va-
riety of such boundary conditions that generate “partial
degeneracy.”

A dimer covering is possible only for ground states for
which every elementary triangle is minimum energy (con-
tains two opposite spins). This is the case for all ground
states of the rectangular periodic domain. However, for the
ground states on a finite triangular domain it is sufficient
that the independent triangles labelled “a” in Fig. 1(a) are
minimum energy [12]. The other elementary triangles may
or may not be minimum energy. Therefore, the ground states
on a finite triangular domain do not necessarily admit a
dimer covering. An example of such a ground state is
shown in Fig. 1(b). The high energy elementary triangles
correspond to vortices if the ground states are mapped onto
the solid-on-solid model [17].

In the following two sections we calculate the ground
state entropy density for a variety of boundary conditions
and domain shapes that do not admit a dimer covering. The
entropy density was calculated by finite size scaling as
described in Ref. [12] using an algorithm [18] that counts
exactly the number of ground states.
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III. ENTROPY DENSITY AS A FUNCTION OF
BOUNDARY SPINS

In this section we derive some properties of the triangular
domain and identify a parameterization of boundary spins
that controls the entropy density. Although all “a” triangles
being minimum energy is a sufficient condition for a ground
state, it is a necessary condition only if such a configuration
is consistent with the particular boundary condition being
considered. Consider a boundary condition consisting of al-
ternating spins on two edges and any configuration of fixed
spins on the third edge. The spins on the row adjacent to the
third edge can be chosen such that all the enclosed “a” tri-
angles are minimum energy, and the process continued to the
opposite vertex. The above condition is therefore necessary
and sufficient for a ground state, and this is the class of
boundary conditions we consider here.

Any configuration of fixed spins on the third edge can be
partitioned into subsets, each subset containing either identi-
cal or alternating spins. Therefore, for a ground state, any
triangular subdomain adjacent to a subset of identical spins
must have spins fixed as shown in Fig. 1(c). If the total
number of these fixed spins is N’, the number of degrees of
freedom of the system is reduced from N to N—N'. To study
the thermodynamic entropy density on the triangular domain,
N’ must vanish relative to N in the limit, i.e., the boundary
condition must satisfy

N'/N—0 asN— o, (4)

If Eq. (4) is not satisfied, the domain size and shape, and the
entropy density normalization, must be adjusted accordingly.
We note that the particular boundary condition on a
triangular domain used in Ref. [12] does not satisfy Eq. (4),
and the normalization used there is therefore incorrect.
This resulted in entropy density values that are too small
and a misleading comparison of the triangular domain with
the rectangular periodic domain. The correct use of this
boundary condition is described in Sec. IV of this paper.

To study the entropy density on the triangular domain we
use here boundary conditions on the third edge that are a
repeating finite pattern of spins and allow the number of
repeats to go to infinity, so that N’/N is O(N~"?) and Eq. (4)
is satisfied. For the rectangular periodic domain the entropy
density is determined by the string density, which is equal to
the density of pairs of adjacent opposite spins on the bound-
ary. We therefore choose here sets of boundary conditions for
the triangular domain that are parameterised by the density
of pairs of adjacent opposite spins, and we denote this den-
sity by . We generated boundary conditions with different
patterns of spins with the same value of S, and for a variety
of values of B. The boundary conditions are classified into
six different patterns of spins which are labeled T1-T6, and
these are listed in Table I together with the corresponding
values of . The thermodynamic entropy density for each
value of B in each class was calculated as described above,
and the results are listed in Table I and plotted versus B,
using different symbols for each class, in Fig. 2(a). Note that
the entropy density is independent of the class of the bound-
ary condition, i.e., is a function of only 8, and is denoted
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TABLE 1. Boundary conditions T1-T6 with the corresponding values of 8 and S,

Class Repeating pattern B So
T1 0XO 2/3 1.01
0X00 172 0.94

0X000 2/5 0.84

0X0000 173 0.76

0X00000 2/7 0.69

0X0O00000 1/4 0.63

T2 OX0OXO 4/5 1.01
0X0OX00 2/3 1.00

0X0OX000 477 0.97

0X0OX000 172 0.93

T3 O0X0OX0XO0 6/7 1.01
0X0XO0X00 3/4 1.00

T4 O0XXO 172 0.94
O0XX00 2/5 0.84

0XX000 1/3 0.76

0XX0000 2/7 0.66

0XX00000 1/4 0.62

T5 OXXX00 1/3 0.76
OXXXO000 2/7 0.68

OXXX0000 1/4 0.62

T6 OXXXX000 1/4 0.62

So(T(B)). A third order polynomial fit to the data Sy(T(B)) is
shown as the solid line in Fig. 2(a). The entropy density for
the rectangular periodic domain «(B) (since p=g for this
domain), is shown for comparison as the dashed line in Fig.
2(a). The results in Fig. 2(a) are discussed in Sec. V.

IV. ENTROPY DENSITY AS A FUNCTION OF
DOMAIN SHAPE

In this section we identify various polygonal domains
with fixed boundary spins for which the entropy density
is controlled by the shape of the domain. These domains
are generated by starting with a triangular domain and
choosing boundary conditions that do not satisfy Eq. (4). The
triangular subdomains referred to in Sec. III then grow
with the domain size and are excluded from the system, thus
modifying the shape of the domain. The entropy density
for the modified domain is then calculated by appropriate
normalization. We consider three such examples.

Consider first a triangular domain with n spins on each
edge, alternating spins on two of the edges, yn contiguous
alternating spins at one end of the third edge (0<y<1)
and the remaining spins identical [Fig. 3(a)]. (Note that
this is the boundary condition considered, but incorrectly

interpreted, in Ref. [12].) The fraction of spins in the trian-
gular subdomain is then finite and the boundary condition
generates a trapezium domain with relative edge lengths
{1,y,(1-7),y} with all boundary spins alternating, which
is denoted P1(y) [Fig. 3(b)]. The parameter 7y controls
the shape of the domain; for y=1 it is triangular and for
0<+y<1 it is a trapezium with aspect ratio proportional to
1/y. The entropy density Sy(P1(+y)) was computed for vari-
ous values of y and the results are shown in Fig. 2(b). A third
order polynomial fit to the data is shown by the curve in the
figure. The behavior of Sy(P1(y)) as y— 0 is not clear so the
curve is not extended to y=0.

Consider second a triangular domain with alternating
spins on two edges, yn contiguous alternating spins
at the center of the third edge, and the remaining spins
identical as shown in Fig. 3(c). This boundary condition
generates a pentagon domain with relative edge lengths
{T+9)/2,(1=9)/2,y,(1=9)/2,(1+v)/2} and all boundary
spins alternating as shown in Fig. 3(d). This domain is de-
noted P2(y) and y controls the shape of the domain. The
length of the bottom edge in Fig. 3(c) is proportional to 7,
and the domain approaches a rhombus for y—0 and a tri-
angle for y—1. The entropy density for this domain
So(P2(vy)) was calculated and is plotted as a function of 7y in
Fig. 2(b).
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FIG. 2. (a) Normalized entropy densities for boundary condi-
tions T1-T6 (each represented by a different symbol) versus 3. The
solid curve shows a third order polynomial fit to all the data
So(T(B)) for 0<B<2/3 and Sy(T(B))=1 for 2/3<B<1. The
dashed curve shows «a(B). (b) Normalized entropy densities
So(P1(y)) (0), Sp(P2(y)) (X), and Sy(P3(y)) (+) versus B. Third
order polynomial fits are shown by the solid lines.

Third, consider a triangular domain with alternating
spins on two edges, (1—7y)n contiguous identical spins at
the center of the third edge and the remaining spins
alternating as shown in Fig. 3(e). This boundary condition
generates a hexagon domain with relative edge lengths
{1,y/2,(1-y),(1-7y),y/2,1} and all boundary spins alter-
nating as shown in Fig. 3(f). This domain is denoted P3(vy)
and has the shape of an inverted V with the widths of the two
“legs” proportional to /2. The entropy density Sy(P3(7y))
was calculated and is shown as a function of y in Fig. 2(b).

The polygon domains P1(7y), P2(vy), and P3(y) with fixed
boundary spins are therefore examples for which the entropy
density varies as a function of the shape of the domain. The
results in Fig. 2(b) are discussed in the next section.

V. DISCUSSION

For boundary conditions whose ground states admit a
dimer covering (e.g., for a rectangular periodic domain) the
entropy density can be calculated using a classification in

PHYSICAL REVIEW E 74, 051101 (2006)

(a) (b)
1=y
() (d)
(1+9)/2 (1+y)/2
(1-n2 (1-9/2
(e)

FIG. 3. (a), (c), and (e) Boundary conditions on a triangular
domain showing triangles with fixed spins in the ground state. Open
and closed circles represent up and down spins, respectively. The
generated polygon domains (b) P1(8), (d) P2(8), and (f) P3(B),
with alternating boundary spins and relative edge lengths as shown.

terms of conserved, nonintersecting strings [13]. The bound-
ary conditions described in this paper admit a richer mani-
fold of ground states in which high energy “non-a” triangles
(vortices) are not frozen out. The ground states can be
mapped onto strings, but the strings are neither nonintersect-
ing nor conserved on rows. Two strings coalesce at each
vortex [e.g., Fig. 4(a)], reducing the number of strings at the
next row by 2.

For the case of a triangular domain, the parameter S is
equal to the density of strings that intersect the bottom edge.
Referring to Fig. 2(a), the two primary observations are that
So(T(B))= a(B) for all B, and that Sy(T(B))=1 for B>2/3,
whereas a(B) is a decreasing function of B for B>2/3.
These two observations can be understood as follows. For
the triangular domain, additional string configurations, over
those for the rectangular peroidic domain, are accessible by
the formation of vortices, resulting in a larger entropy den-
sity on the former domain. The entropy density on both do-
mains increases as the string density increases, since more
strings gives more configurations, until S=2/3 where the
number of configurations is a maximum and the entropy den-
sity reaches its bulk value. As S increases beyond 2/3, for
the rectangular periodic domain the strings become more
tightly packed (since they are nonintersecting and conserved)
and the number of accessible configurations reduces, until at
B=1 the strings are completely packed and there is only one
configuration. For the triangular domain however, as 8 in-
creases beyond 2/3, although the strings are more tightly
packed on the bottom edge, the system exploits (a) configu-
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FIG. 4. Minimum energy configurations with the strings shown
by dashed lines in which (a) two strings form a vortex and (b) two
strings exit the domain at the same row.

rations containing vortices and (b) configurations where two
strings exit the domain at one row, that reduce the string
density on the higher rows. This allows more configurational
freedom (since 8>2/3) and maximal degeneracy is main-
tained up to B=1. Examples are shown in Fig. 4. In Fig. 4(a)
a vortex between the first and second rows reduces the string
density from 1 to 3/4. In Fig. 4(b) two strings exit above the
second row and the string density reduces from 1 to 2/3. If
the strings are evenly distributed on the bottom edge in the
limit of large N (as they are for the boundary conditions used
here) then the number of string configurations, and thence
the entropy density is determined by the string density 8 on
the bottom edge. In contrast to the rectangular periodic
domain, the string density is variable on the other rows.

For the case of the polygon domains with alternating
boundary spins, referring to Fig. 2(b), the two primary
observations are that the entropy density is an increasing
function of 7y for all vy, and that
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So(P2(y)) > Sy(P1(y)) > Sp(P3(y)). (5)

The string density on the bottom edge of the domains is unity
and a finite entropy density results from the presence of vor-
tices and strings exiting the sides of the domain as described
above for the triangular domain. The variation in entropy
density is due to the number of string configurations allowed
by the boundary shape (which is controlled by 7). Referring
to Fig. 3, for domains P1 and P3 decreasing 7 increases the
number of rows relative to the number of strings. Since
strings may coalesce or exit the domain, the effect is that for
smaller 7y there tends to be fewer strings on higher rows, and
hence fewer total configurations, and the entropy density de-
creases. For the domain P2, the domain shape changes from
a rhombus (for which the system is nondegenerate [11]) at
v=0 to a triangle at y=1 for which the system is maximally
degenerate. The relationship (5) can be understood by con-
sidering the range of string configurations accessible for the
different boundary shapes as follows. The strings can adopt
more configurations the more they can “spread out” without
leaving the domain. Maximum spreading can occur if the
strings at each end of the lower edge can be oriented at 30°
away from the bisector of the edge. Referring to Fig. 3 shows
that this is the case for domain P2 but not for domains P1
and P3, so that the entropy density is largest for domain P2.
For domains P1 and P3 the orientations of the edges adjoin-
ing the bottom edge(s) is the same, however, for domain P3
the two narrow “legs” increase the probability of strings
leaving the domain, thus reducing the total number of con-
figurations and the entropy density, for domain P3 compared
to domain P1.

In summary, we have presented examples of boundary
conditions for the TIA that admit a richer manifold of ground
states than those that admit a dimer covering. We have iden-
tified parametrizations of these boundary conditions that al-
low the entropy density to be varied between nondegenerate
and maximal degeneracy. The ground states can contain vor-
tices, which for boundary conditions that admit a dimer cov-
ering are characteristic only of excited states. The entropy
density on these domains is determined by the number of
configurations of strings that are neither nonintersecting nor
conserved. For the triangular domain the entropy density is a
function of the string density on the bottom edge (the only
row on which it is fixed for a particular boundary condition).
For the polygon domains the number of string configura-
tions, and thence the entropy density, is determined by the
shape, and properties such as the aspect ratio, of the domain.
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